Automatic Representation and Classifier Optimization for Image-based Object Recognition
نویسندگان
چکیده
The development of image-based object recognition systems with the desired performance is – still – a challenging task even for experts. The properties of the object feature representation have a great impact on the performance of any machine learning algorithm. Manifold learning algorithms like e.g. PCA, Isomap or Autoencoders have the potential to automatically learn lower dimensional and more useful features. However, the interplay of features, classifiers and hyperparameters is complex and needs to be carefully tuned for each learning task which is very time-consuming, if it is done manually. This paper uses a holistic optimization framework with feature selection, multiple manifold learning algorithms, multiple classifier concepts and hyperparameter optimization to automatically generate pipelines for image-based object classification. An evolutionary algorithm is used to efficiently find suitable pipeline configurations for each learning task. Experiments show the effectiveness of the proposed representation and classifier tuning on several high-dimensional object recognition datasets. The proposed system outperforms other state-of-the-art optimization frameworks.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کامل